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SUFFICIENT CONDITIONS OF FINITENESS OF THE PURSUIT TIME™

B.N. PSHENICHNYI and N.B. SHISHKINA

A new effective way of solving the problem of pursuit which includes the
case of non-linear differential equations is proposed. The controlling
action of the pursuer is designed according to the position of the game.
Ideas previously published in /1-6/ are developed.

1. The differential game is specified in Euclidean space R*.Here UC A" and VCR"
=fitzuv),zsRMucslUveV (1.1)

are non-empty compacta, and the dot denotes differentiation with respect to time t. The vector
function jf is continuous over the set of variables that satisfy the Lipschitz condition with
respect to z and can be represented in the form of the sum f (¢, 2, u,v) = f; (¢, 2, u) + f, (£, 2, V). The
set f,(t,2, U) is convex for any values of the variables t and z. The terminal set has the
form M = M, + K, where M, is a convex compactum in R", and K is a closed convex cone in R".
The game is considered finished from the initial position ¢, 2°% if at some instant of time
t>1° we have 1z ()& M.

Definition 1. BAny measureable function v (), t > t° with values in V is called the
strategy of the pursued in the game (1.1).

Definition 2. Any upper semicontinuous multivalued mapping U (z) from R"™ into 2V, where
2U is the set of all subsets of compactum U, is called the pursuer's strategy.

We say that the differential game (l.l) may be completed from a given initial positicn
1°,z°% if a strategy of the pursuer U (z) exists such that for any strategy of the pursued
v({l) the solution of the differential inclusion

reft g Ul v()
reaches the set M in finite time. ’
2. Let us introduce some notation and prove some ancilliary statements from the theory

of convex analysis.
We set for 2z &= M

D.,={zz=x4+y(m—2z). y>0 me M)}
For z& D, we have the function
h(z)=max (. >0 2+ 17 (z —x) = M} (2.1)
By virtue of closure of M

m@)=z+ 21 {z)(z—z)= M} (2.2)

Lemma 1. The functions A (z) and m(z) are directionally differentiable and satisfy the
Lipschitz condition inside the region ¢f definition.

Proof. From the definition of the function A (:) we have
2=z +A(2) (m(z)—2) (2.3)
For any v,20. y,2 0 such that y,4+v,:=1 and 3,5 D, the eguation

Tk (2) Yol (22)
x "B TR

'\’111+Y'.'5|=-7+-\< "1(52)—-") (2.4)

A= vk (@) + Y (3

holds. Because of the definition of the function A(z), the convexity of the set M, and Eq.
(2.4), we have A(wn + v.2) > A, i.e. that the function A(s) is concave on D, From the concavity
of A(s) it follows that the properties defined by the lemma are valid for it /7/. This
implies that similar properties hold for m{s).
Consider the set
No={¢: ¥l =1, Wy (§) < + o0}

where Wxy (}) is the support function of set M. Withthe assumptions made regarding the set M,
the set N is closed, and the function Wy (§) is continuous on it. This enables us to define
the function
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Fk)= g‘gf {6, 2 —2) + 2 l{y, 2) — Wy @)} =
max 2 {lg, 2+ 1z — 1)) — Wy ()}
v
We put
Ki=con{M—s}={z 2=9y(m—2,7>0 me M}
and dencte the coneconjugate to the cone K, by K.*.

Lemma 2. The function F(z, A) is differentiable with respect to the direction z*, 7*

s

and
F(z h(2). 2% M) = max {—(¢ 2%)-=2*(p m(z)— =) (2.5
vekng
Fiz, az),0, 1) >0

Proof. The function F(;4) is known to be convex with respect to z and 4 /8/. It is
consequently differentiable, and its derivative with respect to the direction 2%, A* is
calculated by the formula

Fzh, o %)= {0 ) AR, 2) — TV g (¥
(2 7%, A¥) wz‘%’fum o¥) 4 A* ((, 2) Prav N
N = teM {, s~ 2 2) — Wy (9l = Fz 2}

We know that me M, if and only if (& m)< Wy (§) for all ¢, ¢|= 1. Hence, taking into
account the definition of the functions F(z A) and Ai(z), we obtain F@ A(2)=0, i.e. Pe Vi,
(z)) means that 2E{¥ miE)— Wyt =00r ({, m—m) <0 for all me M. Thus, taking into
account the definition of the conjugate cone, we cbtain —¥ = K;(;). Besides, since VY& N, we
have N (zA{) = (-K:n(:)) W AN. The first part of the lemma is proved.

Using the definition cf the directional derivative, we cbtain

Fiz, oty —=F(z, 2 (2
=,/ ) ( r())>0

t =

Fizy (233 0, 1)y = lim
10

since Fin i{t=0,and Fl. 20+ 0>0 >0
Note that, if the set M has a smooth boundary, then by definition, the set Knu M B.

where B is the unit sphere in R”. consists of the unigue pcint 7 (m (2)) which is the inner
unit normal to the surface continucusly dependent on that peint.

Lemma 3. Let the set /M have a smocoth boundary. Then in the region where the fcliowing
inegualities are satisfied:

5@ >0 SE) =(Tm@). mi — 1), (2.6)
the functicn A {z) is Sifferentiable and its derivative with respect tc the direction z* is
determined by the formuila

e 2*y = (T (m ). 2*) S {z) 2.7)
Proof. In this case Eg.'Z.3) takes the form
F' iz, 2.{z), 2%, A%) = —(T (m (2)), 2*) -+ A*S (5 2.8

Since 2 (z is directionaily differentiable, we have
Ao %)= 2 (i 12 {2, 2% 0 (1)

Differentiating now the relation F(z-tz*, 2 + ti*) = 0, we obtain by virtue cf (2.8) lemnma
(2.7).

Lemma 4. For any point zsk 7,3 =z -+ & (my— 1) where my&int M (int M is the intericr of
M) the inequality (§.m (z) —2)>0. ¥y & Apne (1 B is satisfied.
Proof. Since myeint M, hence my—ey& M for some e»0 and any vy jyf<i Besides, for
: the ineguality (b m)> (%, m(2), Yme M holds. Consequently, (4, m)— (V. ) > (% m ().

’4" € Xm(:}
Substituting intc this me=z4+ A1z —2), m{@ =z + &Yz {z — 2), we obtain
Fd 2@ (-2l W (2.9)

It can be shown that i< a{z. Taking the maximum of the right side of (2.9) we find that
its left side is not less than ef¢j>0. Hence (¥, m (5~ 1) =14z} X (¥ s — 2z} >0, which it was
required to prove.

Lemma 5. For any € >0 the e-neighbourhood of the convex set ¥ has a smpooth boundary.

Proof. Let z be the boundary point of the set M, Then a vector ¢ f¢f=0 exists such‘
that (Y, m—2)> 0 for any me M. It is reguired tc prove that the normal at that point is unique
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and continuously dependent on the point =
Let now M,= M +e5,, where 5, is the unit sphere in R" It canbe shown that Wy ()= Wy (¥)+
ef¥} Let us assume that
Foim) .—:m{(\b, my— Wy (4} — e ¥} (2.10)

Now we have me M,, if and only if F,(m)<0, and the boundary of M,is defined by the
equation F () =0, i.e. F (m< F(z}, meE M, or (~V¥, m—z)20. Thus, —teK,* and |¥|=1.
Hence —% is the normal to M, at the point =

Carrying out the calculations in reverse order, we find that if —¥ is the unit normal
at z, then F (5)=0.

Thus the set of normals to M, at the point z coincides with the set of those ¥. taken
with the negative sign, at which a maximum is reached in (2.10). But by virtue of the strict
concavity of the function @®, z)~— W), (¥)— e[V}, the maximum of (2.10) is reached at a single point.
This proves that M, has at each boundary point a unique normal T,(z). It is shown in /8/ that
if the maximum in (2.10) is reached at a single point +(z), then «(z) depends continuously on
z. Hence, T, (r)= — Y(z) alsc depends continuously on z which it was required to prove.

Lemma 6. 1If the set M has a smooth boundary z& M and the point my, € M is such that
A{mg) =1, then T (my) & K.* ) B. '
Proof. Let the conditions of lemma be satisfied. Then z4A*(my—z)€M when 72>1 by

virtue of the fact that A (mg)=1 and the definition of the function i(z). Hence M and the set
{r+7y(m—2:0y< 1) do not intersect. This means that a vector ¥, |¥[|=1 exists such that

(¢, m 2 a4 ym—a) 2 M, 0<y<
Hence, when y=0, we obtain ({. mi>{{, 7}, i.e. V& A,*. On the other hand, we obtain (V\,m}>
(¢, m) as y—1, i.e. Y&k, . Since ¥ has a smooth boundary and [¥|=1, we have ¥ =T (m).
3. The answer to the question of whether it is possible to terminate the pursuit in a
finite time is given by the following theorem.

Theorem 1. Let the terminal set M have.a non-empty interior and a smooth boundary; a point
my & int M and a number p >0 exist such that for the point I =2 + p(2° — m,)} and its
corresponding function X {2} {2.1) for any z that satisfies the condition 1>7%(z) > A (") and
t>t°

min max (T (m (). f(t, 2z, us VY280 (3.1)
el vel

(the function m (z) is defined in (2.2)).
Then the differential game (1.1) beginning at instant ° at the point 2z° can be completed.

Proof. It can be see that 74 (m (z)) = 1. Indeed, by the definiticn of 2 ({z}, we have
m{z}) = M anéd consequently

z () — ) =m()= M
i.e. A(m(z)) =1, but if L (m () > 1 i.e.
g+ (m(m)—g)=m=1 y>1
then m (2) = + y {(n — 1} and, substituting this expression intc (2.2}, we cbtain
m=x

NG AML

This means that 1>y, which contradicts the assumption.

- tdhp . )
Furthermore, since mﬂ=z-—-—p-fl(: — z}, hence ».(z’)}i—ip->0, besides, since my<= int M,
hence according to Lemma 4 we have §(3) >0 ({(S(z) is defined in (2.6)). Let us now design

the strategy of the pursuer. We assume for all z such that A(®) <A (D) <1
U@ ={usU:(Tm(@) L z U)) = meat)'( (T (m (2)), fi (L, z, u)
w

Since m (z) depends continuocusly on 2z, anéd T (m) is alsc a continuous function, the set
U {z} gepends semicontinuously from above on z in the region where condition (2.6) is satisfied
/8/. The last condition is necessary, since according to Lemma 3 only in that region is the
function A (z) continucusly differentiable, and the vanishing of the left side of (2.6) indicates
that the boundary of the region of definition of the function A (z) is reached.

Thus, in the region where condition (2.6) is satisfied the differential inclusion
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defitz, U@yvE),ttz(t°) =12 (3.2)

is defined, and it has solutions that can be continued fairly far.
Let us consider some of these, for instance 2(f). According to /9/ the control u (1)
corresponds to it and is a measurable function with values in U {z () = U, such that

=1,z ut), vt (3.3)

Since the function A (z) inside the region defined by (2.6) is continuously differentiable,
by Lemma 3
dh (z (WMdt = A" (z, 2 (&) = (T (m (2)), {{t2 w (), v(EN)/S (2}

Taking into account the conditions of the theorem and the fact that u(f)e U (z (1)), we
obtain the ineguality
dh (z ())/dt > 878 (2) (3.4)

which implies that the function A (z) increases monotonically along the trajectory 2 (t).
Consider the quantity § (z). By definition, 7T (m (z)) for any point me M

(T(m @), m}) (T (m(2)), m(z)) = (T (m(2), ) + S (2)

Since T {m{z})} is a vector of unit length and the points m and z are fixed, the gquantity
S () has an upper limit. Consequently J (z(!)) increases at a non-zerc rate and reaches unity,
provided that at some instant S (z) it does not vanish in (3.4) and it is not possible to
continue the trajectory.

It can be shown that this cannot occur.

Let us assume the contrary, i.e, when 1 ¢, z(t)=z,

S(z)=10 (3.5
The function F(z %) is convex and at the point 2, according to (2.8) A({z) its derivatives
with respect to z and i are — (T {m(),z,) and S(z), respectively, By virtue of the convexity
we have
FGU@e B2 F e b —(T(m () s() — 20 (2 (00) — A () S (3,)

Taking into account (3.5! and the fact that F{z,. k() =0, we obtain
(T {m {23 2o —2{) <0
It follows from {3.3) that
I
()= § fan f=f 20w, ()
t
Hence
e e .
02 \ (T un (&), fldr = S(? (m{={1)), fidy =+ S (T{m G N =T (mz{v), fde
1 t

o

owing to the continucus dependence of T (m) on m, the last terms in the derived formula
will be o(t, —t. On the other hand, by virtue cf u(r)& U (: (1), the selection of U(z), and the
assumptions of the thecrem, the integrand in the penultimate term is greater than 8. Thus
S(ty— ) olty,— <0, 111t which is impossible wher t is fairly close to 1.

Hence in Eg.{2.4} the guantity S {z) has an upper limit and is always non-zero. Hence
the quantity A {z{f)) increases with time and reduces to unity at a certain finite instant of
time. But the condition A (z (1)) = 1 is eguivalent to the fact that z () =m (@ {)) & M.

The game is completed and so is the proof cf the theorem.

The corollary of the theorem is the fcllowing Theorem 2, generalizing the results cbtained
in /1-3/.

Theorem 2. Let M be a convex set, f(f, 2, u, v) = f(i u,v). If the equation

pm—Y=j0 u).Yre V, Vi 13.6)

has a solution me M, ue U and p>»p, >0, the game (1.1) commencing at the instant f° from
the point z° can be terminated on the terminal set M, (M, is the e-neighbourhood of the set
M, and ¢ is an arbitrarily small positive number).

Proof. Let &> 0 and the guantities m, < M,u, e U and p* > p, be selected according
to Eq.(3.6) for given (»1° and v& V. We assume zx=12"+¢ (z* — m,) where mg is an arbitrary

point of M.
It can be shown that for fairly small ¢ >0 and 5> 0 the point f{I, u,, v} together

with the #&-neighbourhood belongs to the cone
Kee={r(m+ey—2): y>0 me&M, ||yl <1} =con{M,~ 1}

For this it is sufficient to show that the eguation
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vim4ey—2°—@(f—m)) = f(l, uy, v)+ by,
is solvable. Setting y=9p* m=m, and taking (3.6) into account, we obtain ptey, = by, +
p*¢ (22— my) or

& ®
V=gt (°—m)

I1f we select

then
4 ? . 1 p 1
WIS g inlb+ =1 —ml < 5 - + 2 <t
Thus the egquation obtained is actually solvable, and for any y e« S we have 1, u,, v)+
Sy = K,

Then for & Kp,o ¥l =1

W ftuthz -8 yhilnl<t
Taking the maximum of the left and right sides with respect to ue U and y, & §,,
respectively, we obtain

max W, ftur)=28¢E Kee,vee V (3.7
ucslU

Taking as the terminal set M,.we now apply Theorem 2. It is obvious that int M.t JJ,
and point m¢ = M which was used to construct the point z, belongs to int M. Furthermore,

>

by Lemma 5, the surface .M, is smooth, and by Lemma 6 T (m (z)) = K, . Hence by virtue of (3.7).

we have m_ag (TmE), ftur)=>6>0

Thus, all conditions of Theorem 1 are satisfied, and the pursuit can be consegquently
completed ater a finite time.

Remarks. 1°

positicon of z.
2°. These results can easily be transferred to the case of several pursuers.

Theorem 2 can be similarly proved when the function f also depends on the

Example 1 (simple pursuit). The mcticn of the object is given by the differential eguaticn
r=u—-piuf<a jri<pa>0,p>0 2R

The terminal set has the form M ={e R*: :i<c¢}

Let us explain what form conditicrn (3.1! will have in this prcblem. We have

min max (T (m (), / (¢, 2, u, v)) = min max (T (m (), u—v) =
0l e I <E < 8

max (T (m (z)), u) 4+ min (7 (m (z)), —v).
fuli<e i< p

The inner unit normals at each boundary pcint m of the set I are obviously egual to —m'e
Conseguently
max (T (m(2)), u)=a, min (T (m(z)), —v)=—p
hi<a | WIS
and condition (3.1) takes the form a—pf >0
We assume the point m, coincides with the origin of coordinates, and the controls of the
pursuer at each realized position cf the game are selected to be equal to the vector —m(z)ae?,
where m(=z+4+h() (=2, 2= +p:, = is the current position of the game, and A(z is a
function constructed by the method indicated above.

Example 2. The differential game is specified by the equatiocn
r=artu—r Jul<rn 1 <s, 720,520, a>0, z& R?
M={eR:|:zi<¢
In this problem condition (3.1) has the form
(T (m () 2) > (s —r)Wa (3.8
We shall show that when the ineguality
re—s>as (3.9)

is satisfied, condition (3.8) holds for all z such that 1>k (z)> A ().
Let us set m,=(0,0). Ther we have z=(1+p):° T(m(z)) = —m (/e as in the first example.
Starting with (3.9), we write

(552 —tet) ey >
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Consequently

r—s 1 .
(FE-1et) = >

Using the inequality (m(2), z)<m(z))jz]=2}z], we have

(=m (2}fe, 244 (z) (m (2} —2)) > (s — r)/ax
Using Eg.(2.3) we obtain the required condition (3.8).
The game can, thus be completed from the initial position :° in a finite time, if its
parameters are connected by relation {3.9). The controls of the pursuers are constructed as
in the preceding example.
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OPTIMAL CONTROL WITH A FUNCTIONAL AVERAGED ALONG THE TRAJECTORY’

A.I. PANASYUK and V.I. PANASYUK

A set of infinite cptimal trajectories (IOT) is defined. It is shown that
in an arkitrary fixed time interval any optimal trajectory of a system for
a problem with faixly large control time (and arbitrary initial conditions
can be uniformly approximated tc some ICT with the desired accuracy.
sufficient ccnditicns are presented which ensure the existence cof IQ0T, and
the structure of the ICT set is investigated, using the rearrangement
operator. The set of main trajectories is defined, and the correctness

of thet definition is proved, A chain of approximations is cbtained:

IOT approximate optimal trajecteories of finite length, and the main
trajectories apprcximate the IOT.

The properties c¢f optima: trajectories of considerable length, and of IOT and main
trajectories are investigated by solving the problem of optimal control, with a functicnal
averaged along the trajectcry. It is shown that a limit time-averaged value of the quality
functional on optimal trajectories of the problems in a finite interval, when its duration
increases withcut limit, does exist, is independent of the selection of the initial and
finite conditions of these problems, and is egual to its value on any IOT. For a problen cf
"optimum in the mean" contrcl the exact lower bound of the functional averaged over time does
not change, if one limits the consideration only to periodic modes of the system with all
possible periods. The paper continues investigations carried out in /1—4/. A somewhat
different aspect of the problem cf the asymptotic forms of the optimal trajectories of a
control system was studied in /5, 6/, and a number of similar problems was investigated in
/7—11/ etc. Generalizations to problems with discrete times were considered in /12, 13/.

1. Formulation of the problem. The following problem of optimal control is

considered: d
=iz u) vsUCR,; z=XCRk (1.1
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